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Abstract We consider a two-stage adaptive linear optimization problem under right

hand side uncertainty with a min-max objective and give a sharp characterization

of the power and limitations of affine policies (where the second stage solution is an

affine function of the right hand side uncertainty). In particular, we show that the

worst-case cost of an optimal affine policy can be Ω(m1/2−δ) times the worst-case

cost of an optimal fully-adaptable solution for any δ > 0, where m is the number of

linear constraints. We also show that the worst-case cost of the best affine policy is

O(
√
m) times the optimal cost when the first-stage constraint matrix has non-negative

coefficients. Moreover, if there are only k ≤ m uncertain parameters, we generalize the

performance bound for affine policies to O(
√
k) which is particularly useful if only a few

parameters are uncertain. We also provide an O(
√
k)-approximation algorithm for the

general case without any restriction on the constraint matrix but the solution is not an

affine function of the uncertain parameters. We also give a tight characterization of the

conditions under which an affine policy is optimal for the above model. In particular,

we show that if the uncertainty set, U ⊆ Rm+ is a simplex then an affine policy is

optimal. However, an affine policy is suboptimal even if U is a convex combination

of only (m + 3) extreme points (only two more extreme points than a simplex) and

the worst-case cost of an optimal affine policy can be a factor (2 − δ) worse than the

worst-case cost of an optimal fully-adaptable solution for any δ > 0.
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1 Introduction

In this paper, we study the power and limitations of affine policies in solving adaptive

optimization problems. In an affine policy (or linear decision rule), we restrict to solu-

tions that are an affine function of the uncertain parameters. The problem of finding

the best such policy is tractable. Therefore, these are widely used to solve multi-stage

dynamic optimization problems and perform extreme well in practice as observed em-

pirically. However, to the best of our knowledge, there are no theoretical performance

bounds for affine policies in general.

We consider the following two-stage problem, ΠAdapt(U) with an uncertain right

hand side.
zAdapt(U) = min cT x+ max

b∈U
dT y(b)

Ax+By(b) ≥ b, ∀b ∈ U
x, y(b) ≥ 0,

(1)

where A ∈ Rm×n1 , B ∈ Rm×n2 , c ∈ Rn1
+ , d ∈ Rn2

+ , U ⊆ Rm+ is a convex uncertainty set

of possible values of the right hand side of the constraints. For any b ∈ U , y(b) denotes

the value of the second-stage variables in the scenario when the right hand side is b.

Hardness. The problem ΠAdapt(U) is intractable in general. In fact, it is hard to ap-

proximate within a factor better than O(logm) under certain complexity assumptions

via a reduction from the following max-min fractional set cover problem,

max
b∈U

min
y(b)
{dT y(b) | By(b) ≥ b},

where d ∈ Rn2
+ , B ∈ {0, 1}m×n2 is an element-set incidence matrix and U ⊆ Rm+ is

a convex uncertainty set. Feige et al. [10] prove that the above max-min fractional

set cover problem can not be approximated within a factor better than O(logm) in

polynomial time unless NP ⊆ TIME
“

2O(
√
n)
”

, where n refers to the problem input

size.

The hardness of ΠAdapt(U) follows as setting A = 0 and B as an element-set inci-

dence matrix reduces ΠAdapt(U) to a max-min fractional set cover problem. Therefore,

the problem ΠAdapt(U) can not be approximated within a factor better than O(logm)

in polynomial time unless NP ⊆ TIME
“

2O(
√
n)
”

. However, an exact or an approx-

imate solution to ΠAdapt(U) can be computed efficiently in several cases when the

uncertainty set U satisfies certain properties.

If the uncertainty set U is a polytope with a small (polynomial) number of ex-

treme points, ΠAdapt(U) can be solved efficiently. Instead of considering the constraint

Ax + By(b) ≥ b for all b ∈ U , it suffices to consider the constraint only for all the ex-

treme points of U . Thus, the resulting expanded formulation of ΠAdapt(U) has only a

small (polynomial) number of variables and constraints which can be solved efficiently.

Dhamdhere et al. [9] consider the problem ΠAdapt(U) where the constraint matrix

A = B and it defines a combinatorial problem such as set cover, Steiner tree and

facility location and U set has a small number of extreme points and give approxima-

tion algorithms with similar performance bounds as the deterministic versions. Feige

et al. [10] extend to a special case of the uncertainty set with an exponential number of

extreme points and give a polylogarithmic approximation for the set cover problem in

this setting. Khandekar et al. [14] consider a similar uncertainty set with exponential

number of extreme points as [10] and give constant factor approximations for several
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network design problems such as Steiner tree and uncapacitated facility location. In

most of these papers, the algorithm and the analysis is very specific to the problem

and does not provide insights for a tractable solution for the general two-stage problem

ΠAdapt(U).

Bertsimas and Goyal [7] show that a static robust solution (that can be computed

efficiently) is a 2-approximation to ΠAdapt(U) if the uncertainty set is symmetric or

positive (see Definition 1). To the best of our knowledge, this is the first such worst-

case bound on the performance of a tractable solution approach in such generality.

The assumptions of symmetry are mild and often satisfied in practice. However, non-

symmetric uncertainty sets occur in modeling in several important applications (such

as modeling at most k resource failures) and the cost of an optimal static solution can

be Ω(m) worse [7] as compared to the fully-adaptable two-stage solution.

Definition 1 i) A set P ⊂ Rn is symmetric, if there exists some u0 ∈ P , such that,

for any z ∈ Rn, (u0 + z) ∈ P ⇔ (u0 − z) ∈ P .

ii) A convex set P ⊂ Rn+ is positive, if there exists a convex symmetric set S ⊂ Rn+
such that P ⊂ S and the point of symmetry of S is contained in P .

Affine policies have been studied extensively in the literature for two-stage and

multi-stage adaptive optimization problems. They were introduced in the context of

stochastic optimization in Rockafellar and Wets [16] and then later in robust optimiza-

tion in Ben-Tal et al. [4] and also extended to linear systems theory in Ben-Tal et

al. [2] and Ben-Tal et al. [3]. Affine policies have also been considered extensively in

control theory of dynamic systems (see Bemporad [1], Kerrigan and Maciejowski [13],

Löfberg [15], Bertsimas and Brown [6], Skaf and Boyd [17], Ben-Tal and Nemirovski [5]

and the references therein). In all these papers, the authors show how to reformulate

the multi-stage linear optimization problem such that an optimal affine policy can be

computed efficiently by solving convex optimization problems such as linear, quadratic,

conic and semi-definite. Kerrigan and Maciejowski [12] first consider the problem of

theoretically analyzing the properties of such policies and show that, under suitable

conditions, the affine policy has certain desirable properties such as stability and robust

invariance. Goulart and Kerrigan [11] show that under certain conditions, the class of

policies that are affine in the uncertain parameters in the current state are equivalent

to the class of affine policies with memory of prior states. Bertsimas et al. [8] recently

show that an affine policy is optimal for a multi-stage problem where there is a single

decision variable with upper and lower bounds and a single uncertain parameter in each

stage. However, to the best of our knowledge, there is no bound on the performance of

affine policies in a general setting such as the one considered in ΠAdapt(U).

1.1 Our Contributions

Our main contributions are the following.

1. (Optimality for Simplex sets) We show that an affine policy is optimal if the

uncertainty set U ⊂ Rm+ is a simplex, i.e., it is a convex combination of (m + 1)

affinely independent points in Rm+ .

2. (Suboptimality) We show that the above optimality result for affine policies is

almost tight, i.e., an affine policy is suboptimal even when U is a convex combi-

nation of 0 and (m + 2) non-zero extreme points in Rm+ . In particular, given any
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δ > 0, we present an example where U is a convex combination of 0 and (m + 2)

other points in Rm+ and the worst-case cost of an optimal affine policy is a factor

(2 − δ) greater than the worst-case cost of an optimal fully-adaptable two-stage

solution.

3. (Lower Bound) We show that surprisingly, the best affine policy can beΩ(m1/2−δ)
times the optimal cost of a fully-adaptable two-stage solution for ΠAdapt(U) for any

δ > 0. In particular, we construct a family of examples where the uncertainty set U
has an exponential number of extreme points and the worst-case cost of an optimal

affine policy is Ω(m1/2−δ) times the optimal cost of ΠAdapt(U). This lower bound

is in contrast to strong empirical evidence of the performance of affine policies.

4. (Upper Bound) For a general convex, compact full-dimensional uncertainty set

U ⊆ Rm+ , we give a tight upper bound on the performance of affine policies for the

case when the constraint matrix corresponding to the first-stage decisions variables,

A ∈ Rn1×m
+ , i.e., Aij ≥ 0 for all i = 1, . . . ,m and j = 1, . . . , n1. In particular,

we show that the worst-case cost of an optimal affine policy for ΠAdapt(U) is

O(
√
m) times the worst-case cost of an optimal fully-adaptable two-stage solution

if A ∈ Rn1×m
+ . Furthermore, if only k ≤ m parameters are uncertain, then we show

that the worst-case cost of an optimal affine policy is O(
√
k) times the optimal

which is a good approximation when there are only a small number of uncertain

parameters. We also give an O(
√
k)-approximation algorithm for the general case

when there is no condition on A. However, the solution in the general case is not

an affine policy.

Outline. In Section 2, we discuss the case when the uncertainty set is a simplex and

present the proof of optimality of affine policies. We present an example for suboptimal-

ity of affine policies when the uncertainty has only (m+3) extreme points in Section 3.

In Section 4, we present a family of examples that show a lower bound of Ω(m1/2−δ)
for any δ > 0 on the performance of affine policies for general convex uncertainty sets.

In Section 5, we present an upper bound of O(
√
m) on the performance of affine poli-

cies for the case when the constraint matrix A ≥ 0 and also the performance bound

of O(
√
k) when there are only k ≤ m uncertain parameters. Finally, in Section 6, we

give an O(
√
k)-approximation algorithm (that is not an affine policy) for the two-stage

adaptive problem when there is no non-negativity restriction on the constraint matrix

A where k again is the number of uncertain parameters.

2 Optimality of Affine Policies for Simplex Uncertainty Sets

In general, the optimal second-stage solution, y∗(b), of the problem: ΠAdapt(U), is

a piecewise linear function of the uncertain right hand side b for all b ∈ U where the

number of pieces can be exponentially many (see [1]). However, if U ⊆ Rm+ is a simplex,

we show that there is an optimal two-stage solution where the second-stage solution

y(b) is an affine function of b ∈ U .

We first show that for any optimal solution of ΠAdapt(U) where the uncertainty

set U is a polytope, the worst case cost occurs at some extreme point of U .
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Lemma 1 Suppose x∗, y∗(b) for all b ∈ U is an optimal solution of ΠAdapt(U) where

the uncertainty set U is a polytope. Let b1, . . . , bK be the extreme points of U . Then,

the worst case cost is achieved at some extreme point, i.e.,

max
b∈U

dT y∗(b) = max
j=1,...,K

dT y∗(bj).

Proof Since {b1, . . . , bK} ⊆ U ,

max
b∈U

dT y∗(b) ≥ max
j=1,...,K

dT y∗(bj).

For the sake of contradiction, suppose

max
b∈U

dT y∗(b) > max
j=1,...,K

dT y∗(bj).

Let

b̂ = argmax{dT y∗(b) | b ∈ U},

such that b̂ /∈ {b1, . . . , bK}. Therefore,

dT y∗(b̂) > max
j=1,...,K

dT y∗(bj). (2)

Since b̂ ∈ U , it can be written as a convex combination of the extreme points, b1, . . . , bK ,

i.e.,

b̂ =

KX
j=1

αj · bj , (3)

where αj ≥ 0 for all j = 1, . . . ,K and α1 + . . . + αK = 1. Consider the following

solution:

ŷ(b̂) =

KX
j=1

αj · y∗(bj). (4)

Clearly, ŷ(b̂) is feasible for b̂ as,

Ax∗ +Bŷ(b̂) = A

0@ KX
j=1

αj

1Ax∗ +B

0@ KX
j=1

αj · y∗(bj)

1A
=

KX
j=1

αj ·Ax∗ +

KX
j=1

αj ·By∗(bj)

=

KX
j=1

αj ·
“
Ax∗ +By∗(bj)

”

≥
KX
j=1

αj · bj (5)

= b̂, (6)
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where (5) follows from the feasibility of x∗, y∗(bj) for bj for all j = 1, . . . ,K and (6)

follows from (3). Furthermore,

dT ŷ(b̂) = dT

0@ KX
j=1

αj · y∗(bj)

1A
=

KX
j=1

αj · dT y∗(bj)

≤
KX
j=1

αj ·max{dT y∗(bk) | k = 1, . . . ,K}

= max{dT y∗(bk) | k = 1, . . . ,K} (7)

< dT y∗(b̂), (8)

where (7) follows as α1 + . . . + αK = 1. Inequality (8) follows from (2). This implies

that y∗(b̂) is not an optimal solution for b̂; a contradiction.

Theorem 1 Consider the problem ΠAdapt(U) such that U is a simplex, i.e.,

U = conv(b1, . . . , bm+1),

where bj ∈ Rm+ for all j = 1, . . . ,m such that b1, . . . , bm+1 are affinely independent.

Then, there is an optimal two-stage solution x̂, ŷ(b) for all b ∈ U such that ŷ(b) is an

affine function of b, i.e., for all b ∈ U ,

ŷ(b) = Pb+ q,

where P ∈ Rn2×m, q ∈ Rn2 .

Proof Consider an optimal solution x∗, y∗(b) for all b ∈ U of ΠAdapt(U). Consider

the following matrices:

Q =
h“
b1 − bm+1

”
. . .
“
bm − bm+1

”i
Y =

h“
y∗(b1)− y∗(bm+1)

”
. . .
“
y∗(bm)− y∗(bm+1)

”i
.

Since b1, . . . , bm+1 are affinely independent, (b1− bm+1), . . . , (bm− bm+1) are linearly

independent. Therefore, Q is a full-rank matrix and thus, invertible. For any b ∈ U ,

consider the following second-stage solution:

ŷ(b) = Y Q−1
“
b− bm+1

”
+ y∗(bm+1). (9)

Since b ∈ U , it is a convex combination of the extreme points of U . Therefore,

b =

m+1X
j=1

αjb
j ,
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where αj ≥ 0 for all j = 1, . . . ,m+ 1 and α1 + . . .+ αm+1 = 1. Therefore, we can the

above equation as:

b =

mX
j=1

αjb
j +

0@1−
mX
j=1

αj

1A bm+1

=

mX
j=1

αj

“
bj − bm+1

”
+ bm+1.

Therefore,

b = Q · α+ bm+1, α = (α1, . . . , αm)T .

Since Q is invertible, we have,

Q−1
“
b− bm+1

”
= α.

Substituting Q−1
“
b− bm+1

”
in (9), we have that,

ŷ(b) = Y · α+ y∗(bm+1)

=

mX
j=1

αj

“
y∗(bj)− y∗(bm+1)

”
+ y∗(bm+1)

=

mX
j=1

αjy
∗(bj) +

0@1−
mX
j=1

αj

1A y∗(bm+1)

=

m+1X
j=1

αjy
∗(bj), (10)

where (10) follows as αm+1 = 1− (α1 + . . .+αm). Therefore, ŷ(b) is a feasible solution

for all b ∈ U by a similar argument as in Lemma 1. Furthermore, we show that the

worst case cost of the solution x∗, ŷ(b) for all b ∈ U is equal to zAdapt(U). Since the

worst case occurs at one of the extreme points of U ,

zAdapt(U) = max
b∈U

“
cT x∗ + dT y∗(b)

”
= max
j=1,...,m+1

“
cT x∗ + dT y∗(bj)

”
.

Note that ŷ(bj) = y∗(bj) for all j = 1, . . . ,m+ 1. Therefore,

max
b∈U

“
cT x∗ + dT ŷ(b)

”
= max
j=1,...,m+1

“
cT x∗ + dT ŷ(bj)

”
= max
j=1,...,m+1

“
cT x∗ + dT y∗(bj)

”
= zAdapt(U).

Therefore, the worst case cost of the solution x∗, ŷ(b), ∀b ∈ U is equal to the optimal

cost of ΠAdapt(U), which implies that the best affine second-stage solution is optimal.

Note that when U is a simplex, the second-stage solution y(b) for all b ∈ U
is described completely by only describing the solution at (m + 1) extreme points,
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b1, . . . , bm+1. Therefore, to construct an affine solution we need to find P ∈ Rn2×m, q ∈
Rn2 such that,

Pbj + q = y∗(bj), ∀j = 1, . . . ,m+ 1,

where y∗(bj) is an optimal fully-adaptable second-stage solution. Such P, q always exist

as the number of degrees of freedom is at least the number of constraints and in the

proof of Theorem 1, we construct one such solution.

3 Suboptimality of Affine Policies for Uncertainty Sets with (m + 2)

Non-Zero Extreme Points

In this section, we show that an affine policy is suboptimal even if U is full-dimensional

and a convex combination of 0 and (m+ 2) other points in Rm+ . This implies that the

optimality of affine policies is almost tight, i.e., an affine policy is optimal only if there

are only (m + 1) non-zero extreme points in the uncertainty set. If the uncertainty

set has even one more non-zero extreme point, affine policies are suboptimal. In fact,

for any δ > 0, we show that if U is a convex combination of 0 and (m + 2) other

points, the cost of an optimal affine policy is a factor (2− δ) worse than the cost of an

optimal fully-adaptable solution. For any δ > 0, we consider the following instance I of

ΠAdapt(U) where m is an even integer such that m > 200
δ2

, n1 = n2 = m and c ∈ Rn1
+ ,

d ∈ Rn2
+ , A ∈ Rm×n1 , B ∈ Rm×n2 and the uncertainty set U are defined as follows.

c = 0

d = (1, . . . , 1)T

For all i, j = 1, . . . ,m

Aij = 0

Bij =

(
1 if i = j,

1√
m

otherwise

U = conv
“n
b0, b1, . . . , bm+2

o”
,

(11)

where,

b0 = 0

bj = ej , ∀j = 1, . . . ,m

bm+1 =

0BBBB@ 1√
m
, . . . ,

1√
m| {z }

m/2

, 0, . . . , 0| {z }
m/2

1CCCCA

bm+2 =

0BBBB@0, . . . , 0| {z }
m/2

,
1√
m
, . . . ,

1√
m| {z }

m/2

1CCCCA .

Here, ej denotes the jth unit vector in Rm whose jth coordinate is one and all others

are zero.
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Theorem 2 Given any δ > 0, consider the instance I of ΠAdapt(U) defined in (11)

where the uncertainty set is U . Then,

zAff (U) > (2− δ) · zAdapt(U).

We first show that the optimal worst-case cost of the instance I defined in (11) is

at most one.

Lemma 2 For the instance I defined in (11),

zAdapt(U) ≤ 1.

Proof We construct a fully-adaptable solution whose worst-case cost is 1 which implies

than zAdapt(U) ≤ 1. Since A = 0, we can assume without loss of generality that the

first-stage decision variables x = 0 in all feasible solutions. Let us first specify the

second-stage solution at the extreme points of U :

y(bj) =


bj if j ∈ {0, 1, . . . ,m},
1
m · e if j ∈ {m+ 1,m+ 2}.

For any b ∈ U , b can be expressed as a convex combination of the extreme points, i.e.,

b =

m+2X
j=0

αjb
j ,

for some αj ≥ 0 for all j = 0, . . . ,m+2 and α0+. . .+αm+2 = 1. Then, the second-stage

solution, y(b) is defined as

y(b) =

m+2X
j=0

αjy(bj).

We next verify that the solution is feasible. For the extreme point b0, By(b0) =

0 ≥ b0. For any bj , j = 1, . . . ,m,

By(bj) = Bbj = Bej =
1

mδ
· e+

„
1− 1

mδ

«
· ej ≥ ej .

Therefore, the solution is feasible for bj , j = 0, . . . ,m. Also, for j = m+ 1,m+ 2,

By(bj) = B ·
„

1

m
, . . . ,

1

m

«
=

„
1

m
+
m− 1

m
· 1√

m

«
· e

=

„√
m+m− 1

m3/2

«
· e

≥
„

m

m3/2

«
· e

=
1√
m
· e

≥ bj ,
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which implies that the solution is feasible for bm+1 and bm+2. Therefore, the solution

is feasible for all extreme points. For any b ∈ U such that,

b =

m+2X
j=0

αjb
j ,

for some αj ≥ 0 for all j = 0, . . . ,m+ 2 and α0 + . . .+ αm+2 = 1,

By(b) = B

0@m+2X
j=0

αjy(bj)

1A
=

m+2X
j=0

αj ·By(bj)

≥
m+2X
j=0

αjb
j

= b.

Hence, the solution is feasible for all b ∈ U . Therefore,

zAdapt(U) ≤ max{dT y(b) | b ∈ U}

= max{dT y(bj) | j = 0, . . . ,m+ 2} (12)

= max

„
max{dT bj | j = 0, . . . ,m}, dT

„
1

m
· e
««

(13)

= 1, (14)

where (12) follows as the worst-case cost of the solution is achieved at an extreme

point of U . Equation (13) follows as y(bj) = bj , j = 0, . . . ,m and y(bj) = 1
m · e for

j = m + 1,m + 2. Equation (14) follows as dT b0 = 0, dT bj = dT ej = 1 for all

j = 1, . . . ,m and dT
`

1
m · e

´
= 1.

Next we show that the worst-case cost of an optimal affine second-stage solution is

at least (2− δ). We first show the existence of a symmetric optimal affine solution for

the instance I. Consider any permutation τ ∈ Sm, where Sm is the set of permutations

of {1, . . . ,m}. We define the following notations.

(i) For any x ∈ Rm, xτ =
“
xτ(1), . . . , xτ(m)

”
.

(ii) For any Y ∈ Rm×m, Y τij = Yτ(i) τ(j), for all i, j ∈ {1, . . . ,m}.

Definition 2 A set U ⊆ Rm is said to be permutation-invariant with respect to a

permutation τ ∈ Sm if, x ∈ P ⇐⇒ xτ ∈ P .

Let

Γ =
n
τ ∈ Sm

˛̨̨
i ≤ m

2
⇐⇒ τ(i) ≤ m

2

o
. (15)

We first show that the uncertainty set U defined in (11) is permutation-invariant

with respect to any permutation in Γ .

Lemma 3 The uncertainty set U in the instance I defined in (11) is permutation-

invariant with respect to any permutation in Γ .



11

Proof Consider any b ∈ U and any permutation τ ∈ Γ . We prove that bτ ∈ U by a

case analysis.

Case 1 (b is an extreme point of U). In this case, b = bj for some j ∈ {0, 1, . . . ,m+

2}. If b = b0, bτ = (0, . . . , 0) = b0. For any j = 1, . . . ,m, if b = ej , then bτ = (ej)τ =

eτ(j) ∈ U . If b = bm+1, then

bτ(j) =


1 if j ≤ m/2
0 otherwise,

as j ≤ m/2 ⇐⇒ τ(j) ≤ m/2. Therefore, bτ = (bm+1)τ = bm+1. Similarly, (bm+2)τ =

bm+2. Therefore, if b is an extreme point bτ ∈ U .

Case 2 (b is not an extreme point of U). In this case b = α0b
0 + . . .+αm+2b

m+2

for some αj ≥ 0 for all j = 0, . . . ,m + 2 such that α0 + . . . + αm+2 = 1. It is easy to

observe that,

bτ =

m+2X
j=0

αj(b
j)τ .

Since (bj)τ ∈ U for all j = 0, . . . ,m+ 2 (from Case 1), bτ ∈ U .

Using a similar argument as above, we can show that if bτ ∈ U , then (bτ )τ
−1
∈ U

as τ ∈ Γ implies τ−1 ∈ Γ . Therefore, b ∈ U as (bτ )τ
−1

= b.

Lemma 4 There exists an optimal affine solution,

ŷ(b) = P̂ b+ q̂,

where P̂ ∈ Rm×m and q̂ ∈ Rm such that q̂i = q̂j for all i, j ∈ {1, . . . ,m}.

Proof Consider an optimal affine solution:

ỹ(b) = P̃ b+ q̃,

for all b ∈ U . For any τ ∈ Γ (15), consider the following permuted instance I′ = Iτ
where c′ = cτ = 0, A′ = Aτ = 0, B′ = Bτ = B and U ′ = Uτ = U . Note that the

permuted instance is constructed by permuting the index of constraints and variables.

Therefore, it is easy to observe that the following permuted solution,

ỹτ (b) = P̃ τ b+ q̃τ ,

for all b ∈ Uτ = U is an optimal solution for the permuted instance Iτ .

Furthermore, Iτ is same as the original instance I. Therefore, ỹτ (b) is an optimal

solution of the original instance. Therefore, the following solution:

ŷ(b) =
1

|Γ |
X
τ∈Γ

ỹτ (b)

=
1

|Γ |
X
τ∈Γ

“
P̃ τ b+ q̃τ

”

=
1

|Γ |

0@X
τ∈Γ

P̃ τ

1A b+
1

|Γ |
X
τ∈Γ

q̃τ ,
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is an optimal affine solution for the instance I as it is a convex combination of optimal

affine solutions. Let

P̄ =
1

|Γ |

0@X
τ∈Γ

P̃ τ

1A , q̄ =
1

|Γ |
X
τ∈Γ

q̃τ .

Therefore, for any j = 1, . . . ,m/2,

q̄j =
1

|Γ |

m/2X
i=1

X
τ∈Γ :τ(i)=j

q̃i

=
1

|Γ |

m/2X
i=1

“m
2
− 1
”

!q̃i, (16)

where (16) follows as there are exactly (m/2− 1)! permutations in Γ that map i to j

for any i, j ∈ {1, . . . ,m/2}. Similarly, for any j = m/2 + 1, . . . ,m,

q̄j =
1

|Γ |

nX
i=m/2+1

“m
2
− 1
”

!q̃i.

Therefore,

q̄ = (β1, . . . , β1| {z }
m/2

, β2, . . . , β2| {z }
m/2

),

for some β1, β2 ∈ R. Now consider the following permutation σ where

σ(j) =
“m

2
+ j
”

mod m, ∀ j = 1, . . . ,m.

It is easy to observe that U is permutation-invariant with respect to the permutation

σ. Therefore, using a similar argument as before P̄σ and q̄σ define an optimal affine

solution for the original instance I. Let

P̂ =
1

2
(P̄ + P̄σ); q̂ =

1

2
(q̄ + q̄σ).

Therefore, the solution

ŷ(b) = P̂ b+ q̂,

is an optimal affine solution as it is a convex combination of two optimal affine solutions

of I. Now for any j = 1, . . . ,m,

q̂j =
q̄j + q̄(j+m/2) mod m

2

=
β1 + β2

2

Proof of Theorem 2 Let ŷ(b) = P̂ b + q̂ for all b ∈ U be an optimal affine solution

that satisfies the symmetric property in Lemma 4 and let q̂j = β for all j = 1, . . . ,m

for some β ∈ R. Now,

zAff (U) = max{dT (P̂ b+ q̂) | b ∈ U}.

For the sake of contradiction, suppose that

zAff (U) ≤ (2− δ). (17)
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Claim 1 β ≤ (2− δ)/m.

Suppose not. Consider b = b0 = 0, ŷ(b) = P̂ b+ q̂ = q̂. Therefore,

zAff (U) ≥ dT ŷ(b0) = dT q̂ = m · β > 2− δ,

a contradiction to (17).

Claim 2 For all j = 1, . . . ,m, P̂jj ≥ 1− 2√
m
− 2
m .

Consider b = ej for j = 1, . . . ,m, ŷ(b) = P̂ ej + q̂. Now,

B(P̂ bj + q̂) = B(P̂ ej + q̂) ≥ ej .

Therefore,
“
BP̂ej +Bq̂

”
j
≥ 1 which implies that,

(P̂jj + β) +
X
i 6=j

1√
m

(P̂ij + β) ≥ 1.

Therefore, either

(P̂jj + β) ≥ 1− 2√
m

or

0@X
i 6=j

(P̂ij + β)

1A ≥ 2.

Suppose for some j′ ∈ {1, . . . ,m},0@X
i 6=j′

(P̂ij′ + β)

1A ≥ 2. (18)

Then,

dT ŷ(bj
′
) =

nX
i=1

ŷi(b
j′)

=

mX
i=1

(P̂ij′ + β)

≥
X
i 6=j′

(P̂ij′ + β) (19)

≥ 2, (20)

where (19) follows as Pj′j′ + β ≥ 0 and (20) follows from (18). This implies that

zAff (U) ≥ 2; a contradiction to (17). Thus, we can assume without loss of generality

that for all j = 1, . . . ,m,

(P̂jj + β) ≥ 1− 2√
m
,

which implies

P̂jj ≥ 1− 2√
m
− β

> 1− 2√
m
− 2

m
,

where the last inequality follows from Claim 1.
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Claim 3 Pij ≥ −(2− δ)/m for all i, j ∈ {1, . . . ,m}.

Consider b = ej for j = 1, . . . ,m. Now, ŷ(b) = P̂ ej + q̂. For any i = 1, . . . ,m, ŷi(b) =

P̂ij + β. Since ŷ(b) ≥ 0,

P̂ij ≥ −β ≥ −
2− δ
m

.

Now, consider b = bm+1. For i = 1, . . . ,m/2,

yi(b
m+1) =

“
P̂ bm+1 + q̂

”
i

=

0@m/2X
j=1

P̂ij ·
1√
m

1A+ β

=
Pii√
m

+

m/2X
j=1,j 6=i

Pij√
m

+ β

≥ 1√
m
− 2

m
− 2

m3/2
−
“m

2
− 1
”
· 2− δ
m3/2

(21)

≥ 1√
m
− 2

m
− 2

m3/2
− 2− δ

2
√
m

=

„
1√
m
− 2− δ

2
√
m

«
− 2

m
− 2

m3/2

=
δ

2
√
m
− 2

m
− 2

m3/2

>
δ

3
√
m
,

where (21) follows from Claims 2 and 3. Therefore,

dT y(bm+1) >
m

2
· δ

3
√
m

=
δ ·
√
m

6
> 2,

a contradiction to (17). Hence, zAff (U) > (2− δ) · zAdapt(U) even when there are only

m+ 3 extreme points in the right hand side uncertainty set.

4 A Large Gap Example for Affine Policies

In this section, we show that the worst-case cost of an affine policy in ΠAdapt(U) can

be arbitrarily large as compared to the optimal cost. In particular, we show that for

any δ > 0 the cost of an optimal affine policy can be Ω(m1/2−δ) times the cost of an

optimal fully-adaptable solution for the following instance I. Let n1 = n2 = m, where,

mδ > 200, (22)
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and c ∈ Rn1
+ , d ∈ Rn2

+ , A ∈ Rm×n1 , B ∈ Rm×n2 and the uncertainty set U are defined

as follows.
c = 0

d = (1, . . . , 1)T

For all i, j = 1, . . . ,m

Aij = 0

Bij =


1 if i = j,

θ0 otherwise

U = conv
“n
b0, b1, . . . , bN

o”
,

(23)

where θ0 = 1
m(1−δ)/2 , r = dm1−δe, N =

`m
r

´
+m+ 2 and

b0 = 0

bj = ej , ∀j = 1, . . . ,m

bm+1 =
1√
m
· e

bm+2 = θ0 ·

0@1, . . . , 1| {z }
r

, 0, . . . , 0

1A ,

where exactly r coordinates are non-zero, each equal to θ0. Extreme points bj , j ≥ m+3

are permutations of the non-zero coordinates of bm+2. Therefore, U has exactly
`m
r

´
extreme points of the form of bm+2. Note that all the non-zero extreme points of

U are roughly on the boundary of the unit hypersphere centered at zero. Therefore,

intuitively a unit hypersphere intersected with the non-negative orthant is the worst-

case example for affine policies in view of a tight upper bound of O(
√
m) on their

performance presented in the next section.

Theorem 3 For the instance I defined in (23) where the uncertainty set is U ,

zAff (U) = Ω
“
m1/2−δ

”
· zAdapt(U),

for any given δ > 0.

We first show that the worst case cost of an optimal fully-adaptable two-stage solution

is at most one.

Lemma 5 For the instance I defined in (23), zAdapt(U) ≤ 1.

Proof We show this by constructing a fully-adaptable solution whose worst-case cost

is 1 which implies than zAdapt(U) ≤ 1. Since A = 0, we can assume without loss of

generality that the first-stage decision variables x = 0 in all feasible solutions. Let us

first specify the second-stage solution at the extreme points of U :

y(bj) =

8<: bj if j ∈ {0, 1, . . . ,m},
1

m
· e if j ≥ m+ 1.
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For any b ∈ U , b can be expressed as a convex combination of the extreme points, i.e.,

b =

NX
j=0

αjb
j ,

for some αj ≥ 0 for all j = 0, . . . , N and α0 + . . . + αN = 1. Then, the second-stage

solution, y(b) is defined as:

y(b) =

NX
j=0

αjy(bj).

It is easy to observe that the solution is feasible. Let us first verify the feasibility

for all the extreme points. For extreme point b0, y(b0) = b0 = 0 and By(b0) = 0 = b0.

For bj , j = 1, . . . ,m,

By(bj) = Bbj = Bej ≥ ej .

Therefore, the solution is feasible for bj , j = 0, . . . ,m. For any, j ≥ m+ 1,

By(bj) = B ·
„

1

m
· e
«

=

„
1

m
+
m− 1

m
· 1

m(1−δ)/2

«
· e

=

 
m(1−δ)/2 +m− 1

m(3−δ)/2

!
· e

≥
„

m

m(3−δ)/2

«
· e

=

„
1

m(1−δ)/2

«
· e

≥ bj ,

which implies that the solution is feasible for bj . Therefore, the solution is feasible for

all extreme points. Using an argument similar to the proof of Lemma 2, we can show

that the solution is feasible for all b ∈ U .

Therefore,

zAdapt(U) ≤ max{dT y(b) | b ∈ U}

= max{dT y(bj) | j = 0, . . . , N}

= max

„
max{dT bj | j = 0, . . . ,m}, dT

„
1

m
· e
««

(24)

= 1, (25)

where (24) follows as y(bj) = bj , j = 0, . . . ,m and y(bj) = 1/m · e for all j ≥ m + 1

and (25) follows as dT b0 = 0, dT bj = dT ej = 1 for all j = 1, . . . ,m and dT (1/m·e) = 1.

In the following lemmas, we show that there exists an optimal affine solution sat-

isfying certain symmetric properties for the instance of ΠAdapt(U) in Theorem 3.

Lemma 6 The uncertainty set U in (23) is permutation-invariant with respect to any

permutation in Sm.
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Proof Consider any permutation σ ∈ Sm. We need to show that b ∈ U ⇐⇒ bσ ∈ U .

Suppose b ∈ U . We show that bσ ∈ U by a case analysis.

1. If b = b0, then clearly bσ = b ∈ U .

2. If b = bj = ej for j = 1, . . . ,m, then bσ = eσ(j) ∈ U .

3. If b = bm+1 = (1/
√
m, . . . , 1/

√
m), then bσ = b ∈ U .

4. If b = bj for j = m+2, . . . , N , then b has exactly dm1−δe non-zero coordinates each

equal to θ0. Therefore, bσ also satisfies the same structure and since all possible

combinations of the non-zero coordinates are extreme points of U , bσ ∈ U .

5. If b is not an extreme point of U , then b = α0b
0 + . . .+αN b

N for some αj ≥ 0, j =

0, . . . , N and α0 + . . .+ αN = 1. Therefore,

bσ =

NX
j=0

αj(b
j)σ.

Since (bj)σ ∈ U for all j = 0, . . . , N , bσ is a convex combination of the extreme

points of U which implies bσ ∈ U .

Therefore, b ∈ U implies bσ ∈ U .

Conversely, suppose v = bσ ∈ U . By the same argument as above, we can show

that v(σ
−1) ∈ U . Now,

v(σ
−1) =

`
bσ
´(σ−1)

= b,

which implies b ∈ U .

We next show that if we consider a permuted instance of the instance in Theorem 3,

we obtain exactly the same instance. For any σ ∈ Sm, consider the following permuted

instance I′ = I(σ) of the instance defined in (23) where

c′ = 0

d′ = dσ = (1, . . . , 1)T

A′ = Aσ = 0

B′ = Bσ

U ′ = Uσ

(26)

Note that for any i, j = 1, . . . ,m, Bσij = Bσ(i),σ(j).

Lemma 7 The permuted instance I(σ) defined in (26) is the same as the original

instance.

Proof Note that B is symmetric where Bii = 1 for all i = 1, . . . ,m and Bij = θ0
for all i 6= j. Therefore, Bσii = Bσ(i),σ(i) = 1 for all i = 1, . . . ,m. Also for any i 6= j,

Bσij = Bσ(i),σ(j) = θ0 since i 6= j implies σ(i) 6= σ(j). Therefore, Bσ = B. In Lemma 6,

we show that U is permutation-invariant and thus, Uσ = U . Therefore, the permuted

instance is exactly similar to the original instance.

Lemma 8 Let σ ∈ Sn, and let

y(b) = Pb+ q,

be an optimal affine solution. Then the following solution,

yσ(b) = Pσb+ qσ,
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where Pσij = Pσ(i),σ(j) for all i, j ∈ {1, 2, . . . ,m}, and qσj = qσ(j) for all j = 1, . . . ,m,

is an optimal affine solution for the original instance. Note that yσ(b) is not the per-

mutation of coordinates of the solution vector y(b) by σ.

Proof Let us first prove that the new solution is feasible. Suppose not. Therefore,

there exists b ∈ U and i′ ∈ {1, . . . ,m} such that,`
Byσ(b)

´
i′
< bi′ .

Let us permute the constraints by σ−1. Therefore,“
B(σ−1)yσ(b)

”
σ−1(i′)

< bσ−1(i′),

where B(σ−1)ij = Bσ−1(i),j for all i, j ∈ {1, . . . ,m}. Let us also permute the columns

of B(σ−1) by σ−1 so that we get back the original constraint matrix as Bσ−1(i),σ−1(j) =

Bij for all i, j ∈ {1, . . . ,m}. Since we permute the columns of B(σ−1), we must also

permute the solution vector yσ(b) by the same permutation. Therefore,„
B
`
yσ(b)

´(σ−1)
«
σ−1(i′)

< bσ−1(i′), (27)

where, `
yσ(b)

´(σ−1)
= P ′b+

`
qσ
´σ−1

= P ′b+ q,

and P ′ = (Pσ) (σ−1), i.e., P ′ij = Pi,σ(j) for all i, j ∈ {1, . . . ,m}. If we also permute

the columns of P ′ by σ−1, we can express the above equation as,`
yσ(b)

´(σ−1)
= Pbσ

−1
+ q = y(bσ

−1
). (28)

Simplifying (27) using (28), we have that“
By
“
bσ
−1””

σ−1(i′)
< bσ−1(i′) = bσ

−1

i′ ,

which is a contradiction as y(bσ
−1

) is a feasible solution for bσ
−1

. Furthermore,

dT yσ(b) =
“
dσ
−1”T `

yσ(b)
´σ−1

= dT y(bσ
−1

),

as (yσ(b))σ
−1

= y(bσ
−1

) from (28). Hence, the worst-case of the solution yσ(b) is same

as the worst-case cost of the optimal affine solution.

We next show that there is an optimal affine solution for the instance in Theorem 3

that satisfies certain symmetry properties.

Lemma 9 There exists an optimal affine solution,

ŷ(b) = P̂ b+ q̂,

for all b ∈ U such that,

1. P̂ij = µ for all i 6= j for some µ ∈ R and P̂jj = θ for all j = 1, . . . ,m, θ ∈ R.

2. q̂j = λ, for all j = 1, . . . ,m, λ ∈ R.
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Proof Consider an optimal affine solution:

y(b) = Pb+ q,

where P ∈ Rm×m and q ∈ Rm. Let Sm denote the set of all permutations of {1, . . . ,m}.
From Lemma 8, we know that for any σ ∈ Sm, the solution,

yσ(b) = Pσb+ qσ,

for all b ∈ U is also an optimal solution for the problem. We know that any con-

vex combination of a set of optimal solutions is also optimal. Consider the following

solution,

ŷ(b) = P̂ b+ q̂,

where

P̂ =
1

|Sm| ·
X
σ∈Sm

Pσ,

q̂ =
1

|Sm| ·
X
σ∈Sm

qσ.

Therefore the solution defined by P̂ and q̂ is a convex combination of the solutions

defined by all the permutations which are each optimal implying that the new solution

is also optimal. Furthermore, for any j = 1, . . . ,m,

P̂jj =
1

|Sm| ·
X
σ∈Sm

Pσjj

=
1

|Sm| ·
X
σ∈Sm

Pσ(j),σ(j)

=
1

|Sm| ·
mX
k=1

X
σ:σ(j)=k

Pkk

=
1

|Sm| ·
mX
k=1

(m− 1)!Pkk (29)

=
(m− 1)!

m!
·
mX
k=1

Pkk

=
1

m
·
mX
k=1

Pkk,

where (29) follows as |{σ ∈ Sm | σ(j) = k}| = (m − 1)!. The final expression of P̂jj
does not depend on j and thus, P̂jj = θ for all j = 1, . . . ,m where

θ =
1

m
·
mX
k=1

Pkk.
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For any i, j ∈ {1, . . . ,m}, i 6= j,

P̂ij =
1

|Sm| ·
X
σ∈Sm

Pσij

=
1

|Sm| ·
X
σ∈Sm

Pσ(i),σ(j)

=
1

|Sm| ·
mX
k=1

X
l=1,...,m, l 6=k

0@ X
σ: σ(i)=k,σ(j)=l

Pkl

1A
=

1

|Sm| ·
mX
k=1

X
l=1,...,m, l 6=k

(m− 2)!Pkl (30)

=
(m− 2)!

m!
·
mX
k=1

X
l=1,...,m, l 6=k

Pkl

=
1

m(m− 1)
·
mX
k=1

X
l=1,...,m, l 6=k

Pkl,

where (30) follows as |{σ ∈ Sm | σ(i) = k, σ(j) = l}| = (m−2)!. Again, the expression

of P̂ij does not depend on i, j and thus, P̂ij = µ for all i, j = 1, . . . ,m, i 6= j where,

µ =
1

m(m− 1)
·
mX
k=1

X
l=1,...,m, l 6=k

Pkl.

Using a similar argument, we can show that q̂j = λ for all j = 1, . . . ,m where,

λ =
1

m
·
mX
k=1

qk.

Proof of Theorem 3 Let ŷ(b) = P̂ b + q̂ for all b ∈ U be an optimal affine solution

satisfying that for all i, j ∈ {1, . . . ,m}, i 6= j, P̂ij = µ, Pjj = θ and q̂j = λ. Such a

solution exists from Lemma 9. Let

zAff (U) = max{dT (P̂ b+ q̂) | b ∈ U}.

For the sake of contradiction, suppose that

zAff (U) ≤ m1/2−δ

4
. (31)

Claim 4 0 ≤ λ ≤ 1
m1/2+δ .

Note that y(b0) = y(0) = λ · e. Since y(b0) ≥ 0, λ ≥ 0. Now, suppose λ > 1
m1/2+δ .

Then,

zAff (U) ≥ dT y(b0) = dT (λ · e) = λ · eT e = λ ·m > m1/2−δ,

a contradiction to (31).

Claim 5 θ ≥ 1
3 .
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Note that

y(e1) =

0B@θ + λ, µ+ λ, . . . , µ+ λ| {z }
(m−1)

1CA .

Since By(e1) ≥ e1,

(θ + λ) + (m− 1) · (µ+ λ) · θ0 ≥ 1.

Therefore, either

(θ + λ) ≥ 1

2
or (m− 1) · (µ+ λ) · θ0 ≥

1

2
.

Suppose

(m− 1) · (µ+ λ) · θ0 ≥
1

2
. (32)

Then,

zAff (U) ≥ dT y(e1) = eT (θ + λ, µ+ λ, . . . , µ+ λ| {z }
m−1

)

= θ + λ+ (m− 1) · (µ+ λ)

≥ (m− 1) · (µ+ λ) (33)

≥ m(1−δ)/2

2
(34)

>
m1/2−δ

2
,

where (33) follows as θ+λ ≥ 0 since y(e1) ≥ 0 and (34) follows from (32).This implies

a contradiction to (31). Thus, we can assume that

(θ + λ) ≥ 1

2
,

which implies that

θ ≥ 1

2
− λ

≥ 1

2
− 1

m1/2+δ
(35)

>
1

3
,

where (35) follows from Claim 4.

Claim 6 − 1
m1+δ/2 ≤ µ < 0.

Suppose µ ≥ 0. Consider b = bm+1. For any i = 1, . . . ,m,

yi(b
m+1) =

“
P̂ bm+1 + q̂

”
i

= θ · 1√
m

+ (m− 1) · µ 1√
m

+ λ

≥ θ · 1√
m

+ λ (36)

≥ θ · 1√
m

(37)

≥ 1

3
√
m
, (38)
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where (36) follows since we assumed that µ ≥ 0. Inequality (37) follows as λ ≥ 0 from

Claim 4 and (38) follows from Claim 5. Now,

zAff (U) ≥ dT y(bm+1) =

mX
i=1

yi(b
m+1) > m · 1

3
√
m

=

√
m

3
,

a contradiction to (31). Therefore, µ < 0.

Consider the extreme point bm+2 where the first r = dm1−δe/2 coordinates are

non-zero and each equal to θ0. Now,

y(bm+2) =

2666666666664

r

8><>:
θ0 · (θ + (r − 1)µ) + λ

...

θ0 · (θ + (r − 1)µ) + λ

(m− r)

8><>:
θ0 · rµ+ λ

...

θ0 · rµ+ λ

3777777777775
.

Since y(bm+2) ≥ 0, θ0 · rµ+ λ ≥ 0 and thus,

µ ≥ − λ

θ0 · r

≥ − 1

m1/2+δ
·m(1−δ)/2 · 1

dm1−δe
(39)

≥ − 1

m3δ/2
· 1

m1−δ

= − 1

m1+δ/2
,

where (39) follows from the bound on λ in Claim 4 and substituting values of θ0 and

r. Now, consider b = bm+1. For any i = 1, . . . ,m,

yi(b
m+1) =

“
P̂ bm+1 + q̂

”
i

= θ · 1√
m

+ (m− 1) · µ · 1√
m

+ λ

≥ 1

3
√
m
− (m− 1) · 1

m(3+δ)/2
(40)

>
1

3
√
m
−m · 1

m(3+δ)/2

=
1

3
√
m
− 1

m(1+δ)/2

=
1√
m
·
„

1

3
− 1

mδ/2

«
>

1√
m
· 1

4
, (41)

where (40) follows as θ ≥ 1/3 and µ ≥ −1/m1+δ and (41) follows as mδ > 200 (22)

which implies mδ/2 > 12. Therefore,

zAff (U) ≥ dT y(bm+1) =
mX
i=1

yi(b
m+1) > m · 1

4
√
m

=

√
m

4
,
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which is a contradiction to (31).

5 Performance Guarantee for Affine Policies when A ≥ 0.

In this section, we prove that an optimal affine policy is within O(
√
m) from the

optimal two-stage adaptive objective when the right hand side is uncertain and the

constraint matrix corresponding to the first-stage decision variables, A ≥ 0. In view of

the example in Section 4 where we show a gap of Ω(m1/2−δ) for any constant δ > 0

for affine policies, it follows that the approximation factor O(
√
m) is tight. We later

consider the case where there are only k ≤ m uncertain parameters and show that the

performance of affine policies is only O(
√
k) times worse that the cost of an optimal

fully-adaptable solution. This bound is particularly useful in applications where there

are only a small number of uncertain parameters.

Theorem 4 Consider the problem ΠAdapt(U) where the right hand side uncertainty

set U ⊆ Rm+ is convex, compact and full-dimensional and A ≥ 0. Then

zAff (U) ≤ 3
√
m · zAdapt(U),

i.e., the worst case cost of an optimal affine policy is at most 3
√
m times the worst

case cost of an optimal fully adaptable solution.

We construct a feasible affine solution for ΠAdapt(U) starting from an optimal

fully-adaptable solution such that the worst case cost of the affine solution is at most

3
√
m · zAdapt(U). For all j = 1, . . . ,m, let

µj = max{bj | b ∈ U}

βj = argmax{bj | b ∈ U}.
(42)

It is easy to observe that µj > 0 for all j = 1, . . . ,m, since U ⊆ Rm+ is full-dimensional.

To motivate the construction we consider the following case where,

mX
j=1

bj
µj
≤
√
m, ∀b ∈ U . (43)

In this case we construct a feasible affine (in fact a linear) solution as follows. Let

x∗, y∗(b) for all b ∈ U denote an optimal fully-adaptable solution for ΠAdapt(U). Let

P =

»
1

µ1
· y∗(β1), . . . ,

1

µm
· y∗(βm)

–
.

Consider the solution:

x̃ =
√
m · x∗, ỹ(b) = Pb, ∀b ∈ U . (44)
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The solution is feasible as for any b ∈ U ,

Ax̃+Bỹ(b) = A(
√
m · x∗) +B(Pb)

=
√
m ·Ax∗ +B

0@ mX
j=1

bj
µj
· y∗(βj)

1A
=

0@√m− mX
j=1

bj
µj

1A ·Ax∗ +

mX
j=1

bj
µj
·
“
Ax∗ +By∗(βj)

”

≥
mX
j=1

bj
µj
·
“
Ax∗ +By∗(βj)

”
(45)

≥
mX
j=1

bj
µj
· βj (46)

=

mX
j=1

bj ·
„

1

µj
· βj
«

≥
mX
j=1

bj · ej (47)

= b,

where (45) follows, since A, x∗ ≥ 0 and thus, Ax∗ ≥ 0. Inequality (46) follows from the

feasibility of x∗, y∗(βj) for βj , j = 1, . . . ,m and (47) follows as βjj = µj and βji ≥ 0 for

all i = 1, . . . ,m. The cost of the solution for any b ∈ U is

cT x̃+ dT (Pb) =
√
m · cT x∗ + dT

0@ mX
j=1

bj
µj
y∗(βj)

1A
=
√
m · cT x∗ +

mX
j=1

bj
µj
· dT y∗(βj)

≤
√
m · cT x∗ +

0@ mX
j=1

bj
µj

1A · max
j=1,...,m

dT y∗(βj)

≤
√
m · cT x∗ +

√
m · max

j=1,...,m
dT y∗(βj) (48)

=
√
m ·

„
cT x∗ + max

j=1,...,m
dT y∗(βj)

«
≤
√
m · zAdapt(U), (49)

where (48) follows from (43) and (49) follows as cT x∗ + dT y∗(βj) ≤ zAdapt(U) since

βj ∈ U for all j = 1, . . . ,m. Therefore, the worst case cost of the affine solution (44)

is at most
√
m times the worst case cost of an optimal fully-adaptable solution if U

satisfies (43).

For the general case when (43) is not satisfied, the basic idea is that the set

of coordinates {1, . . . ,m} can be partitioned into two sets J1, J2 with J1 ∪ J2 =

{1, . . . ,m}, J1 ∩ J2 = ∅ such that
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1. For all b ∈ U , X
j∈J1

bj
µj
≤
√
m.

2. There exists β ∈ Rm+ that is a sum of at most 2
√
m points in U such that βj ≥ bj

for all j ∈ J2, b ∈ U .

We construct the partition J1, J2 and β ∈ Rm+ satisfying the above properties iteratively

where we initialize β to zero and J1 to {1, . . . ,m}. In each iteration, we select a b ∈ U
such that

P
j∈J1

bj/µj is strictly greater than
√
m (if such a point exists) and add it

to β. If for any coordinate j ∈ J1, βj is at least µj , this implies that the current β

dominates the jth coordinate of all b ∈ U . Therefore, we remove j from J1 and add

it to J2. Since in each iteration we are adding a point from U whose scaled sum over

coordinates in J1 is large, we argue that the algorithm will find β and the partition

J1, J2 in at most 2
√
m iterations which we use to prove the required properties. The

algorithm to construct β and the partition J1, J2 is described in Figure 1. Note that

the construction of β and the partition [J1, J2] is only to show the existence of a good

affine solution for ΠAdapt(U) and is not required to compute the best affine solution

which can be found directly in polynomial time.

Lemma 10 Let β, J1, J2 be the vector and the partition that Algorithm A produces.

For all b ∈ U , X
j∈J1

bj
µj
≤
√
m,

and bj ≤ βj for all j ∈ J2.

Proof The first property follows from the fact that Algorithm A terminates when the

condition in Step 2 is not satisfied which implies that,X
j∈J1

bj
µj
≤
√
m,

for all b ∈ U . Furthermore, for any j ∈ J2, βj ≥ µj from Step 2(d)i.

Next we show that the number of iterations required to compute β in Algorithm

A is at most 2
√
m.

Lemma 11 The number of iterations, K in Algorithm A is at most 2
√
m.

Proof Let b1, . . . , bK be the sequence of vectors constructed in Algorithm A. We first

argue that bKj ≤ 2µj for all j = 1, . . . ,m. For any j = 1, . . . ,m, suppose k(j) is the

last iteration when j ∈ J1 before Step 2d in Algorithm A. Therefore, b
k(j)−1
j ≤ µj .

Also, u
k(j)
j ≤ µj . Therefore,

bk(j) = bk(j)−1 + u
k(j)
j ≤ 2µj .

Now, bKj = bkj = b
k(j)
j for all k ≥ k(j) which implies bKj ≤ 2µj for all j = 1, . . . ,m.

Therefore,
mX
j=1

bKj
µj
≤ 2m.
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Algorithm A to compute β and partition J1, J2.

1. Initialize k ← 0, b0 ← 0, U ← U , J0
1 ← {1, . . . ,m}, J0

2 = ∅.

2. while
“
∃b ∈ U s.t.

P
j∈J1

bj
µj

>
√
m
”

(a) k ← k + 1.

(b) uk ← argmax
nP

j∈J1
bj
µj
| b ∈ U

o
.

(c) For all j = 1, . . . ,m,

bkj =

(
bk−1
j + ukj , if j ∈ Jk−1

1

bk−1
j , otherwise.

(d) For all j ∈ Jk−1
1 ,

i. If bkj ≥ µj ,

Jk1 ← Jk−1
1 \ {j}

Jk2 ← Jk−1
2 ∪ {j}.

ii. Else,

Jk1 ← Jk−1
1

Jk2 ← Jk−1
2 .

3. K ← k.

4. β ← u1 + . . .+ uK .

5. J1 ← JK1 , J2 ← JK2 .

6. Return {β,K, u1, . . . , uK , J1, J2}.

Fig. 1 Algorithm A for Computing β and partition J1, J2.

Alternatively,

mX
j=1

bKj
µj

=

mX
j=1

KX
k=1

bkj − b
k−1
j

µj

=

KX
k=1

mX
j=1

bkj − b
k−1
j

µj

=

KX
k=1

X
j∈Jk−1

1

ukj
µj

(50)

≥
KX
k=1

√
m (51)

= K ·
√
m,
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where (50) follows as bkj = bk−1
j for all j /∈ Jk−1

1 and (51) follows from the choice of

uk in each iteration k = 1, . . . ,K in A. Therefore, we have that

K ·
√
m ≤

mX
j=1

bKj
µj
≤ 2m,

which implies that K ≤ 2
√
m.

Proof of Theorem 4 Suppose x∗, y∗(b) for all b ∈ U is an optimal solution for

ΠAdapt(U). Also, let β,K, u1, . . . , uK , J1, J2 be returned by Algorithm A and let

ŷ =
2
√
m

K

KX
k=1

y∗(uk). (52)

Consider the following affine solution: x̃ = 3
√
m · x∗ and for all b ∈ U ,

ỹ(b) =
X
j∈J1

1

µj
· y∗(βj) · bj + ŷ.

Let us first verify the feasibility of the affine solution. For any b ∈ U ,

Ax̃+Bỹ(b) = A(3
√
m · x∗) +B

0@X
j∈J1

y∗(βj) ·
bj
µj

+ ŷ

1A
≥

0@2
√
m+

X
j∈J1

bj
µj

1A ·Ax∗ +B

0@X
j∈J1

y∗(βj) ·
bj
µj

+ ŷ

1A (53)

=
X
j∈J1

bj
µj
· (Ax∗ +By∗(βj)) + 2

√
m ·Ax∗ +Bŷ

≥
X
j∈J1

bj
µj
· βj + 2

√
m ·Ax∗ +Bŷ (54)

≥
X
j∈J1

bj · ej + 2
√
m ·Ax∗ +Bŷ (55)

=
X
j∈J1

bj · ej + 2
√
m ·Ax∗ +

KX
k=1

2
√
m

K
·By∗(uk) (56)

=
X
j∈J1

bj · ej +

KX
k=1

2
√
m

K
·
“
Ax∗ +By∗(uk)

”

≥
X
j∈J1

bj · ej +

KX
k=1

2
√
m

K
uk (57)

≥
X
j∈J1

bj · ej +
KX
k=1

uk (58)

=
X
j∈J1

bj · ej + β

≥ b, (59)
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where (53) follows as
P
j∈J1

bj
µj
≤
√
m from Lemma 10 and Ax∗ ≥ 0. Inequality (54)

follows as the solution x∗, y∗(βj) is feasible for βj for all j = 1, . . . ,m since βj ∈ U .

Inequalty (55) follows as βj ≥ 0 and βjj = µj . Equation (56) follows from substituting

the value of ŷ from (52). Inequality (57) follows from the feasibility of x∗, y∗(uk) as

uk ∈ U for all k = 1, . . . ,K and (58) follows as K ≤ 2
√
m from Lemma 11. Finally (59)

follows as β ≥ 0 and for all j /∈ J1, βj ≥ bj . Therefore, the solution is feasible for all

b ∈ U .

We next argue that the cost of the affine solution x̃, ỹ(b) for all b ∈ U is O(
√
m)

times zAdapt(U). For any b ∈ U ,

cT x̃+ dT ỹ(b) = cT (3
√
m · x∗) + dT

0@X
j∈J1

y∗(βj) ·
bj
µj

+ ŷ

1A
= 3
√
m · cT x∗ +

X
j∈J1

bj
µj
· dT y∗(βj) + dT ŷ

≤ 3
√
m · cT x∗ +

X
j∈J1

bj
µj
·max
j∈J1

dT y∗(βj) + dT ŷ

≤
√
m ·

„
cT x∗ + max

j∈J1
dT y∗(βj)

«
+ 2
√
m · cT x∗ + dT ŷ (60)

≤
√
m · zAdapt(U) + 2

√
m · cT x∗ + dT ŷ (61)

=
√
m · zAdapt(U) +

KX
k=1

2
√
m

K
·
“
cT x∗ + dT y∗(uk)

”
(62)

≤
√
m · zAdapt(U) +

KX
k=1

2
√
m

K
· zAdapt(U) (63)

= 3
√
m · zAdapt(U),

where (60) follows from Lemma 10, (61) follows from the fact that βj ∈ U for all

j = 1, . . . ,m and thus, zAdapt(U) ≥ cT x∗ + dT y∗(βj). Equation (62) follows from

substituting the value of ŷ from (52) and (63) follows the fact that uk ∈ U and thus,

zAdapt(U) ≥ cT x∗ + dT y∗(uk) for all k = 1, . . . ,K. Therefore, the cost of the affine

solution is at most 3
√
m · zAdapt(U) for all b ∈ U which implies

zAff (U) ≤ 3
√
m · zAdapt(U).

Several comments are in order. The upper bound of O(
√
m) on the performance

of affine policies is tight (up to a constant factor) since from Theorem 3, we have that

for any δ > 0, there exists an instance of ΠAdapt(U) such that the worst case cost of

an optimal affine policy is Ω(m1/2−δ) times the worst case cost of an optimal fully

adaptable solution. Furthermore, while the proof of Theorem 4 is existential where we

only show the existence of a good affine policy, an optimal affine policy can be computed

efficiently in polynomial time. Also note that the performance of affine policies is strictly

better as compared to the performance of a single robust solution which can be Ω(m)

factor worse than the optimal.
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5.1 Performance Bound when the Number of Uncertain Parameters is k ≤ m

We show that if the number of uncertain parameters in ΠAdapt(U) is k ≤ m, then

we can prove an improved performance bound of O(
√
k) on the performance of affine

policies. In many applications, only a small number of parameters are uncertain where

our result shows that affine policies provide a good approximation. In particular, we

consider the following problem Πk
Adapt(U) where only k right hand side coefficients are

uncertain.

zkAdapt(U) = min cT x+ max
b∈U

dT y(b, b0)

A1x+B1y(b, b0) ≥ b, ∀b ∈ U

A2x+B2y(b, b0) ≥ b0

x, y(b, b0) ≥ 0,

(64)

where A1 ∈ Rk×n1
+ , A2 ∈ R(m−k)×n2

+ , B1 ∈ Rk×n2
+ , B2 ∈ R(m−k)×n2

+ , b0 ∈ Rm−k+ , c ∈
Rn1

+ , d ∈ Rn2
+ , U ⊆ Rk+ is a convex uncertainty set of possible values of b. As before, for

any b ∈ U , y(b, b0) denotes the value of the second-stage variables in the scenario when

the right hand side is (b, b0). We show that an affine policy is an O(
√
k) approximation

for the above problem. In particular, we prove the following theorem.

Theorem 5 Let zkAff (U) denote the cost of an optimal affine policy and let zkAdapt(U)

denote the cost of an optimal fully-adaptable solution for Πk
Adapt(U) where the number

of uncertain right hand side coefficients is k ≤ m. Then,

zkAff (U) = O(
√
k) · zkAdapt(U).

We show the existence of a good affine solution for Πk
Adapt(U) by constructing

one such affine solution from a fully-adaptable solution. In particular, we consider the

following two problems constructed from Πk
Adapt(U).

z(Π1) = min cT x+ max
b∈U

dT y(b)

A1x+B1y(b) ≥ b, ∀b ∈ U
x, y(b) ≥ 0.

(Π1)

z(Π2) = min cT x+ dT y

A2x+B2y ≥ b0

x, y ≥ 0.

(Π2)

Lemma 12 The optimal cost of both Π1 and Π2 are at most the optimal cost of

Πk
Adapt(U), i.e.,

z(Π1) ≤ zkAdapt(U), z(Π2) ≤ zkAdapt(U).

Proof Consider x∗, y∗(b, b0) for all b ∈ U be an optimal full-adaptable solution for

Πk
Adapt(U). Clearly, it is a feasible solution for Π1 as:

A1x
∗ +B1y

∗(b, b0) ≥ b, ∀b ∈ U .
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Therefore,

z(Π1) ≤ cT x∗ + max
b∈U

dT y∗(b, b0) = zkAdapt(U).

Also, consider any b1 ∈ U . Then the solution x∗, y(b1, b0) is a feasible solution for Π2

as:

A2x
∗ +B2y

∗(b1, b0) ≥ b0.

Therefore,

z(Π2) ≤ cT x∗ + dT y∗(b1, b0) ≤ cT x∗ + max
b∈U

dT y∗(b, b0) = zkAdapt(U).

Proof of Theorem 5 Let x1, y1(b) = Pb + q for all b ∈ U be an optimal affine

solution for Π1 and let x2, y2 be an optimal solution for Π2. We construct an affine

solution for Πk
Adapt(U) as follows.

x̃ = x1 + x2, ỹ(b, b0) = y1(b) + y2 = Pb+ q + y2, ∀b ∈ U . (65)

We first show that the above solution is feasible.

A1x̃+B1ỹ(b, b0) = A1(x1 + x2) +B1(y1(b) + y2)

≥ A1x
1 +B1y

1(b) (66)

≥ b,

where (66) follows as A1x
2, B1y

2 ≥ 0 and the last inequality follows from feasibility

of x1, y1(b) for Π1. Also,

A2(x1 + x2) +B2(y1(b) + y2) ≥ A2x
2 +B2y

2 ≥ b0,

where the first inequality follows as A2x
1, B2y

1(b) ≥ 0 and the second inequality

follows from the feasibility of x2, y2 for Π2. Therefore, the solution (65) is feasible for

Πk
Adapt(U). Now,

cT x̃+ max
b∈U

dT ỹ(b, b0) = cT (x1 + x2) + max
b∈U

dT (y1(b) + y2)

=
`
cT x1 + max

b∈U
dT (Pb+ q)

´
+
`
cT x2 + dT y2´

= zAff (Π1) + z(Π2) (67)

≤ 3
√
k · z(Π1) + z(Π2) (68)

≤ 3
√
k · zkAdapt(U) + zkAdapt(U) (69)

= O(
√
k) · zkAdapt(U),

where (67) follows from as x1, y1(b) is an optimal affine solution for Π1 and x2, y2 is an

optimal solution for Π2. Also, zAff (Π1) denotes the cost of an optimal affine solution.

Inequality (68) follows from Theorem 4 which shows that the cost of an optimal affine

solution is at most 3
√
m times the cost of an optimal fully adaptable solution, where m

is the number of constraints. Note that the number of constraints in Π1 is exactly k and

z(Π1) denotes the cost of an optimal fully-adaptable solution. Finally, inequality (69)

follows from Lemma 12.
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6 An O(
√

m)-approximation for the General case

In this section, we present O(
√
m)-approximation algorithm for ΠAdapt(U) even when

the assumption on A ≥ 0 is relaxed using an argument similar in spirit to the proof of

Theorem 4. The goal is to compute a first stage solution x such that for any b ∈ U , the

optimal second-stage solution does not have a high cost. Note that the algorithm does

not propose a functional form such as an affine policy for the second stage solution

instead just computes a good first stage solution in an efficient manner.

The basic idea is to construct an uncertainty set U0 from the given uncertainty set

U in ΠAdapt(U), such that U0 has a small number of extreme points and it dominates

U . In other words, for all b ∈ U , there exists a b′ ∈ U0 such that b ≤ b′. In particular,

we consider the following uncertainty set.

U0 = conv
n

2
√
m · β1, . . . , 2

√
m · βm, 2β

o
, (70)

where βj , j = 1, . . . ,m are defined in (42) and β = u1 + . . .+ uK is the point returned

by Algorithm A. We show that U0 satisfies the above mentioned properties and the

worst case cost of an optimal fully-adaptable solution on U0 is O(
√
m) times zAdapt(U).

Furthermore, since U0 is a convex combination of only (m+1) extreme points which are

affinely independent, ΠAdapt(U0) can be solved optimally using an affine policy (see

Theorem 1) and an optimal first stage solution for ΠAdapt(U0) is a good approximation

as a first stage solution of ΠAdapt(U). In particular, we prove the following theorem.

Theorem 6 Let U0 be as defined in (70) and let x̃ ∈ Rn+ be an optimal first stage so-

lution for ΠAdapt(U0). Then x̃ is an O(
√
m)-approximation for the first stage solution

of ΠAdapt(U), i.e., the worst case cost of the following solution for ΠAdapt(U): x̃ is

the first stage solution and for all b ∈ U ,

y(b) = argmin{dT y | By ≥ b−Ax̃, y ≥ 0},

is at most O(
√
m) · zAdapt(U).

We first show that U0 dominates U .

Lemma 13 For any b ∈ U , there exists b′ ∈ U0 such that b ≤ b′.

Proof Consider any b ∈ U and consider the partition [J1, J2] of {1, . . . ,m} computed

by Algorithm A. We know that

X
j∈J1

bj
µj
≤
√
m,

from Lemma 10. Therefore,

λ =
X
j∈J1

bj

2
√
mµj

≤ 1

2
. (71)

Also for all j ∈ J2,

bj ≤ βj ≤ 2βj ,
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since β ≥ 0. Let vj = 2
√
m · βj for all j = 1, . . . ,m and vm+1 = 2β. Therefore,

U0 = conv(v1, . . . , vm+1). We can express b as follows.

b =

mX
j=1

bj · ej

=
X
j∈J1

bj

2
√
mµj

· 2
√
mµj · ej +

X
j∈J2

bj · ej

≤
X
j∈J1

bj

2
√
mµj

· 2
√
m · βj +

X
j∈J2

bj · ej (72)

=
X
j∈J1

bj

2
√
mµj

· vj +
X
j∈J2

bj · ej

≤
X
j∈J1

bj

2
√
mµj

· vj +
X
j∈J2

βj · ej (73)

≤
X
j∈J1

bj

2
√
mµj

· vj + β (74)

=
X
j∈J1

bj

2
√
mµj

· vj +
1

2
· vm+1, (75)

where (72) follows as βj ≥ µj · ej for all j = 1, . . . ,m. Inequalities (73) and (74) follow

as βj ≥ bj for all j ∈ J2 and β ≥ 0. Equation (75) follows as vm+1 = 2β. If λ = 0,

then bj = 0 for all j ∈ J1 which implies that b ≤ 1/2 · vm+1 ≤ vm+1. Therefore, we

can assume that λ > 0 and (75) can be further modified as follows.

b ≤
X
j∈J1

bj

2
√
mµj

· vj +
1

2
· vm+1

≤ 1

2λ
·

0@X
j∈J1

bj

2
√
mµj

· vj
1A+

1

2
· vm+1 (76)

=
X
j∈J1

bj

4λ
√
mµj

· vj +
1

2
· vm+1

=

m+1X
j=1

αj · vj , (77)

where (76) follows as 2λ ≤ 1 from (71) and for all j = 1, . . . ,m+ 1,

αj =

8>>><>>>:
bj

4λ
√
mµj

, j ∈ J1,

1

2
, j = m+ 1,

0, otherwise.
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Now,

m+1X
j=1

αj =
X
j∈J1

αj + αm+1

=
X
j∈J1

bj

4λ
√
mµj

+
1

2

=
1

2λ
·

0@X
j∈J1

bj

2
√
mµj

1A+
1

2

=
1

2λ
· λ+

1

2
(78)

= 1,

where (78) follows from (71). Therefore, b′ = α1 · v1 + . . . + αm+1 · vm+1 is a convex

combination of extreme points of U0 which implies b′ ∈ U0 and from (77) we have that

b ≤ b′.
We next show that zAdapt(U0) is at most a factor of O(

√
m) worse than zAdapt(U).

Lemma 14 zAff (U0) = zAdapt(U0) ≤ 4
√
m · zAdapt(U).

Proof Note that since U0 is a simplex, an affine policy is optimal and can be computed

in polynomial time as shown in Theorem 1. Therefore, zAff (U0) = zAdapt(U0). To

prove the second inequality, consider an optimal solution x∗, y∗(b) for all b ∈ U for

ΠAdapt(U). We construct the following approximate solution for ΠAdapt(U0): x̂ =

4
√
m · x∗ and for all j = 1, . . . ,m, ŷ(vj) = 4

√
m · y∗(βj) and

ŷ(vm+1) =
4
√
m

K
·
“
y∗(u1) + . . . y∗(uK)

”
.

For any b ∈ U0, b = α1 · v1 + . . .+ αm+1 · vm+1, where αj ≥ 0 for all j = 1, . . . ,m+ 1

and α1 + . . .+ αm+1 = 1. Therefore,

ŷ(b) =

m+1X
j=1

αj · ŷ(vm+1).

We show the feasibility of the solution x̂, ŷ(b) for all extreme points of U0 and the feasi-

bility of the solution at other points follows from a standard argument as in Lemma 2.

For any j = 1, . . . ,m,

Ax̂+Bŷ(vj) = 4
√
m ·

“
Ax∗ +By∗(βj)

”
≥ 4
√
m · βj

≥ 2
√
m · βj

= vj .
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For j = m+ 1,

Ax̂+Bŷ(vm+1) = A
`
4
√
m · x∗

´
+B

„
4
√
m

K
·
“
y∗(u1) + . . .+ y∗(uK)

”«

=
4
√
m

K
·

 
KX
k=1

“
Ax∗ +By∗(uk)

”!

≥ 2
√
m

K
· 2

 
KX
k=1

uk
!

=
2
√
m

K
· vm+1

≥ vm+1, (79)

where (79) follows as K ≤ 2
√
m from Lemma 11. Therefore, the solution x̂, ŷ(b) is

feasible for all b ∈ U0. For any j = 1, . . . ,m,

cT x̂+ dT ŷ(vj) = 4
√
m ·

“
cT x∗ + dT y∗(βj)

”
≤ 4
√
m · zAdapt(U), (80)

where (80) follows from the optimality of x∗, y∗(b) for all b ∈ U for ΠAdapt(U). Also,

cT x̂+ dT ŷ(vm+1) = 4
√
m · cT x∗ +

4
√
m

K
·
KX
k=1

dT y∗(uk)

=
4
√
m

K
·

 
KX
k=1

“
cT x∗ + dT y∗(uk)

”!

≤ 4
√
m

K
·

 
KX
k=1

zAdapt(U)

!
(81)

= 4
√
m · zAdapt(U), (82)

where (81) follows from the optimality of x∗, y∗(b) for all b ∈ U for ΠAdapt(U) and the

fact that uk ∈ U for all k = 1, . . . ,K. Therefore, we have the following.

zAdapt(U0) ≤ max
b∈U0

“
cT x̂+ dT ŷ(b)

”
= max
j=1,...,m+1

“
cT x̂+ dT ŷ(vj)

”
(83)

≤ 4
√
m · zAdapt(U), (84)

where (83) follows as the worst case cost is achieved at an extreme point of U0 and (84)

follows from (80) and (82).

Proof of Theorem 6 We need to show that an optimal first stage solution of

ΠAdapt(U0) is a good approximation for ΠAdapt(U). Let x̃, ỹ(b) for all b ∈ U0 be

an optimal solution for ΠAdapt(U0) that can be computed in polynomial time. Let the

first stage solution for ΠAdapt(U) be x̄ = x̃ and for any b ∈ U ,

ȳ(b) = argmin{dT y(b) | By ≥ b−Ax̄}.
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We claim that the worst case cost of this solution is at most zAdapt(U0) ≤ 4
√
m ·

zAdapt(U). From Lemma 13, we know that for any b ∈ U , there exists b′ ∈ U0 such

that b ≤ b′. Therefore, ȳ(b) = ỹ(b′) is a feasible solution for b ∈ U as:

Ax̄+Bȳ(b) = Ax̃+Bỹ(b′)

≥ b′

≥ b.

Therefore,

min{dT y | Ax+By ≥ b−Ax̄} ≤ dT ỹ(b′),

which implies that

cT x̄+ min{dT y | Ax+By ≥ b−Ax̄} ≤ cT x̃+ dT ỹ(b′)

≤ zAdapt(U0)

≤ 4
√
m · zAdapt(U),

where the last inequality follows from Lemma 14.

7 Conclusions

In this paper, we give a tight characterization of the performance of affine policies in the

context of a fairly general two-stage adaptive optimization problem. In particular, we

show that the performance of an optimal affine policy can be a factor Ω(m1/2−δ) worse

as compared to an optimal full-adaptable solution for any δ > 0. The uncertainty sets

in the family of examples that achieve this lower bound have an exponential number of

extreme points that lie on or near the surface of a unit hypersphere in the non-negative

orthant. Therefore, the intersection of a hypersphere with the non-negative orthant is

essentially the worst-case example for affine policies. We also present a matching upper

bound of O(
√
m) on the performance of affine policies when the constraint coefficients

for the first-stage decision variables are non-negative. Furthermore, if the number of

uncertain right hand side coefficients is k ≤ m, where m is the number of linear

constraints in the model, we show that the affine policies are a O(
√
k)-approximation

for the adaptive problem if all the constraint coefficients are non-negative. We also

present an O(
√
m)-approximation algorithm (that is not an affine policy) if the non-

negativity condition on the constraint coefficients is relaxed.

To the best of our knowledge, our results provide the first bound on the performance

of affine policies in such generality. Moreover, we are not aware of any other efficient

algorithms for the general two-stage adaptive problem with a performance guarantee

better than O(
√
m). Since the hardness of approximation is known to be O(logm) [10],

reducing the gap is an interesting open problem. It would be interesting to study other

tractable policies for adaptive optimization such as polynomial policies and piecewise

affine policies both from a theoretical perspective as well as designing better policies

that work well in practice.
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